公式
strict provable sort wff;
集合
pure sort set;
类
strict sort class;
存在唯一量词∃!x
def exu {x: set} (P: wff x): wff = $ \ex y \fo x (x = y \iff P) $; prefix exu: $\exu$ prec 50;
限域任意量词(∀x∈y)
def foin {x: set} (y: set) (P: wff x): wff = $ \fo x (x \in y \imp P) $; notation foin {x: set} (y: set) (P: wff x): wff = ($\foin{$:50) x ($}{$:0) y ($}$:0) P;
限域存在量词(∃x∈y)
def exin {x: set} (y: set) (P: wff x): wff = $ \ex x (x \in y \and P) $; notation exin {x: set} (y: set) (P: wff x): wff = ($\exin{$:50) x ($}{$:0) y ($}$:0) P;
限域不存在量词(∄x∈y)
def nexin {x: set} (y: set) (P: wff x): wff = $ \neg \exin{x}{y} P $; notation nexin {x: set} (y: set) (P: wff x): wff = ($\nexin{$:50) x ($}{$:0) y ($}$:0) P;
限域存在唯一量词(∃!x∈y)
def exuin {x: set} (y: set) (P: wff x): wff = $ \exu x (x \in y \and P) $; notation exuin {x: set} (y: set) (P: wff x): wff = ($\exuin{$:50) x ($}{$:0) y ($}$:0) P;
替换[y/x]
def rep (y: set) {x: set} (P: wff x): wff = $ \fo t (t = y \imp \fo x (x = t \imp P)) $; notation rep (y: set) {x: set} (P: wff x): wff = ($\rep{$:50) y ($}{$:0) x ($}$:0) P;
幂集公理
axiom ax_pow {w x y z: set}: $ \fo x \ex y \fo z (z \in y \iff \fo w (w \in z \imp w \in x)) $;
并集公理
axiom ax_uni {u x y z: set}: $ \fo x \ex y \fo z (z \in y \iff \ex u (u \in x \and z \in u)) $;
无穷公理
axiom ax_inf {w x y z: set}: $ \fo x \ex y (x \in y \and \fo z (z \in y \imp \ex w (z \in w \and w \in y))) $;
替换公理
axiom ax_rep {u v x y: set} (P: wff x y): $ \fo u (\fo x \ex y \fo v (P \imp y = v) \imp \ex v \fo y (y \in v \iff \exin{x}{u} P)) $;
正则公理
axiom ax_reg {x y z: set}: $ \fo x (\ex y y \in x \imp \ex y (y \in x \and \fo z (z \in y \imp \neg z \in x))) $;
选择公理
axiom ax_cho {u w x y z: set}: $ \fo x \ex y \fo z (z \in x \and \ex u u \in z \imp \exu u (u \in z \and \exin{w}{y} (z \in w \and u \in w))) $;
→左引入
theorem imp_left_intro (A B: wff): $ A \imp B \imp A $;
→对→左插入
theorem imp_for_imp_left_insert (A B C: wff): $ (A \imp B \imp C) \imp (A \imp B) \imp A \imp C $;
同一律
theorem imp_reflect (A: wff): $ A \imp A $;
→对→左引入
theorem imp_for_imp_left_intro (A B C: wff): $ (B \imp C) \imp (A \imp B) \imp A \imp C $;
→对→左置换
theorem imp_for_imp_left_permute (A B C: wff): $ (A \imp B \imp C) \imp B \imp A \imp C $;
→对→右逆引入
theorem imp_for_imp_right_reverse_intro (A B C: wff): $ (A \imp B) \imp (B \imp C) \imp A \imp C $;
→传递(柯里化形式)
theorem imp_trans_curried (A B C: wff): $ (A \imp B) \imp (B \imp C) \imp A \imp C $;
→对→右左引入
theorem imp_for_imp_right_left_intro (A B C: wff): $ (A \imp B) \imp A \imp C \imp B $;
MP规则公式(柯里化形式)
theorem mp_curried (A B: wff): $ (A \imp B) \imp A \imp B $;
MP规则假设引入
theorem mp_imp_left_intro (A B C D: wff): $ (A \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C $;
→对→左提取
theorem imp_for_imp_left_extract (A B C: wff): $ ((A \imp B) \imp A \imp C) \imp A \imp B \imp C $;
→对→右插入
theorem imp_for_imp_right_insert (A B C: wff): $ ((A \imp B) \imp C) \imp (A \imp C) \imp B \imp C $;
→中¬逆消除
theorem neg_in_imp_reverse_elim (A B: wff): $ (\neg A \imp \neg B) \imp B \imp A $;
¬消除→
theorem neg_elim_with_imp (A B: wff): $ \neg A \imp A \imp B $;
¬→引出
theorem neg_intro_with_imp (A B: wff): $ A \imp \neg A \imp B $;
¬¬消除
theorem neg_neg_elim (A: wff): $ \neg \neg A \imp A $;
¬¬引出
theorem neg_neg_intro (A: wff): $ A \imp \neg \neg A $;
→左¬置换
theorem imp_left_neg_permute (A B: wff): $ (\neg A \imp B) \imp \neg B \imp A $;
→右¬置换
theorem imp_right_neg_permute (A B: wff): $ (A \imp \neg B) \imp B \imp \neg A $;
→中逆¬引出
theorem neg_in_imp_reverse_intro (A B: wff): $ (A \imp B) \imp \neg B \imp \neg A $;
→左¬自蕴
theorem imp_left_neg_imp_same (A: wff): $ (\neg A \imp A) \imp A $;
→右¬蕴否
theorem imp_right_neg_imp_neg_same (A: wff): $ (A \imp \neg A) \imp \neg A $;
→左合并¬→
theorem imp_left_merge_neg_imp (A B C: wff): $ (A \imp C) \imp (B \imp C) \imp (\neg A \imp B) \imp C $;
→左含¬合并
theorem imp_left_have_neg_merge (A B C: wff): $ (\neg A \imp C) \imp (B \imp C) \imp (A \imp B) \imp C $;
矛盾律
theorem contradiction (A: wff): $ \neg (A \and \neg A) $;
∧合成
theorem and_compound (A B: wff): $ A \imp B \imp A \and B $;
∧左拆分
theorem and_left_split (A B: wff): $ A \and B \imp A $;
∧右拆分
theorem and_right_split (A B: wff): $ A \and B \imp B $;