→右¬置换
theorem imp_right_neg_permute (A B: wff): $ (A \imp \neg B) \imp B \imp \neg A $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp_for_imp_right_reverse_intro | ((A \imp \neg B) \imp \neg \neg A \imp \neg B) \imp ((\neg \neg A \imp \neg B) \imp B \imp \neg A) \imp (A \imp \neg B) \imp B \imp \neg A |
|
2 | imp_for_imp_right_reverse_intro | (\neg \neg A \imp A) \imp (A \imp \neg B) \imp \neg \neg A \imp \neg B |
|
3 | neg_neg_elim | \neg \neg A \imp A |
|
4 | 2, 3 | mp | (A \imp \neg B) \imp \neg \neg A \imp \neg B |
5 | 1, 4 | mp | ((\neg \neg A \imp \neg B) \imp B \imp \neg A) \imp (A \imp \neg B) \imp B \imp \neg A |
6 | neg_in_imp_reverse_elim | (\neg \neg A \imp \neg B) \imp B \imp \neg A |
|
7 | 5, 6 | mp | (A \imp \neg B) \imp B \imp \neg A |