Theorem and_compound | index | src |

∧合成

theorem and_compound (A B: wff): $ A \imp B \imp A \and B $;
StepHypRefExpression
1 imp_trans_curried
(A \imp (A \imp \neg B) \imp \neg B) \imp (((A \imp \neg B) \imp \neg B) \imp B \imp \neg (A \imp \neg B)) \imp A \imp B \imp \neg (A \imp \neg B)
2 imp_for_imp_left_permute
((A \imp \neg B) \imp A \imp \neg B) \imp A \imp (A \imp \neg B) \imp \neg B
3 imp_reflect
(A \imp \neg B) \imp A \imp \neg B
4 2, 3 mp
A \imp (A \imp \neg B) \imp \neg B
5 1, 4 mp
(((A \imp \neg B) \imp \neg B) \imp B \imp \neg (A \imp \neg B)) \imp A \imp B \imp \neg (A \imp \neg B)
6 imp_right_neg_permute
((A \imp \neg B) \imp \neg B) \imp B \imp \neg (A \imp \neg B)
7 5, 6 mp
A \imp B \imp \neg (A \imp \neg B)
8 7 conv and
A \imp B \imp A \and B

Axiom use

ZFC (ax_mp, ax_p1, ax_p2, ax_p3)