→左合并¬→
theorem imp_left_merge_neg_imp (A B C: wff): $ (A \imp C) \imp (B \imp C) \imp (\neg A \imp B) \imp C $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp_for_imp_left_permute | ((B \imp C) \imp (A \imp C) \imp (\neg A \imp B) \imp C) \imp (A \imp C) \imp (B \imp C) \imp (\neg A \imp B) \imp C |
|
2 | imp_for_imp_right_reverse_intro | ((B \imp C) \imp \neg C \imp \neg B) \imp ((\neg C \imp \neg B) \imp (A \imp C) \imp (\neg A \imp B) \imp C) \imp (B \imp C) \imp (A \imp C) \imp (\neg A \imp B) \imp C |
|
3 | neg_in_imp_reverse_intro | (B \imp C) \imp \neg C \imp \neg B |
|
4 | 2, 3 | mp | ((\neg C \imp \neg B) \imp (A \imp C) \imp (\neg A \imp B) \imp C) \imp (B \imp C) \imp (A \imp C) \imp (\neg A \imp B) \imp C |
5 | imp_for_imp_left_permute | ((A \imp C) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C) \imp (\neg C \imp \neg B) \imp (A \imp C) \imp (\neg A \imp B) \imp C |
|
6 | imp_for_imp_right_reverse_intro | ((A \imp C) \imp \neg C \imp \neg A) \imp ((\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C) \imp (A \imp C) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
|
7 | neg_in_imp_reverse_intro | (A \imp C) \imp \neg C \imp \neg A |
|
8 | 6, 7 | mp | ((\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C) \imp (A \imp C) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
9 | imp_trans_curried | ((\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B)) \imp (((\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C) \imp (\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
|
10 | imp_for_imp_right_reverse_intro | ((\neg C \imp \neg A) \imp \neg C \imp \neg B \imp \neg (\neg A \imp B)) \imp ((\neg C \imp \neg B \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B) |
|
11 | imp_for_imp_left_insert | (\neg C \imp \neg A \imp \neg B \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg A) \imp \neg C \imp \neg B \imp \neg (\neg A \imp B) |
|
12 | imp_left_intro | (\neg A \imp \neg B \imp \neg (\neg A \imp B)) \imp \neg C \imp \neg A \imp \neg B \imp \neg (\neg A \imp B) |
|
13 | imp_for_imp_right_reverse_intro | (\neg A \imp (\neg A \imp B) \imp B) \imp (((\neg A \imp B) \imp B) \imp \neg B \imp \neg (\neg A \imp B)) \imp \neg A \imp \neg B \imp \neg (\neg A \imp B) |
|
14 | imp_for_imp_left_permute | ((\neg A \imp B) \imp \neg A \imp B) \imp \neg A \imp (\neg A \imp B) \imp B |
|
15 | imp_reflect | (\neg A \imp B) \imp \neg A \imp B |
|
16 | 14, 15 | mp | \neg A \imp (\neg A \imp B) \imp B |
17 | 13, 16 | mp | (((\neg A \imp B) \imp B) \imp \neg B \imp \neg (\neg A \imp B)) \imp \neg A \imp \neg B \imp \neg (\neg A \imp B) |
18 | neg_in_imp_reverse_intro | ((\neg A \imp B) \imp B) \imp \neg B \imp \neg (\neg A \imp B) |
|
19 | 17, 18 | mp | \neg A \imp \neg B \imp \neg (\neg A \imp B) |
20 | 12, 19 | mp | \neg C \imp \neg A \imp \neg B \imp \neg (\neg A \imp B) |
21 | 11, 20 | mp | (\neg C \imp \neg A) \imp \neg C \imp \neg B \imp \neg (\neg A \imp B) |
22 | 10, 21 | mp | ((\neg C \imp \neg B \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B) |
23 | imp_for_imp_left_insert | (\neg C \imp \neg B \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B) |
|
24 | 22, 23 | mp | (\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B) |
25 | 9, 24 | mp | (((\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C) \imp (\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
26 | imp_for_imp_left_insert | ((\neg C \imp \neg B) \imp (\neg C \imp \neg (\neg A \imp B)) \imp (\neg A \imp B) \imp C) \imp ((\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
|
27 | imp_left_intro | ((\neg C \imp \neg (\neg A \imp B)) \imp (\neg A \imp B) \imp C) \imp (\neg C \imp \neg B) \imp (\neg C \imp \neg (\neg A \imp B)) \imp (\neg A \imp B) \imp C |
|
28 | neg_in_imp_reverse_elim | (\neg C \imp \neg (\neg A \imp B)) \imp (\neg A \imp B) \imp C |
|
29 | 27, 28 | mp | (\neg C \imp \neg B) \imp (\neg C \imp \neg (\neg A \imp B)) \imp (\neg A \imp B) \imp C |
30 | 26, 29 | mp | ((\neg C \imp \neg B) \imp \neg C \imp \neg (\neg A \imp B)) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
31 | 25, 30 | mp | (\neg C \imp \neg A) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
32 | 8, 31 | mp | (A \imp C) \imp (\neg C \imp \neg B) \imp (\neg A \imp B) \imp C |
33 | 5, 32 | mp | (\neg C \imp \neg B) \imp (A \imp C) \imp (\neg A \imp B) \imp C |
34 | 4, 33 | mp | (B \imp C) \imp (A \imp C) \imp (\neg A \imp B) \imp C |
35 | 1, 34 | mp | (A \imp C) \imp (B \imp C) \imp (\neg A \imp B) \imp C |