¬→引出
theorem neg_intro_with_imp (A B: wff): $ A \imp \neg A \imp B $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp_for_imp_left_permute | (\neg A \imp A \imp B) \imp A \imp \neg A \imp B |
|
2 | neg_elim_with_imp | \neg A \imp A \imp B |
|
3 | 1, 2 | mp | A \imp \neg A \imp B |