→左¬自蕴
theorem imp_left_neg_imp_same (A: wff): $ (\neg A \imp A) \imp A $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp_for_imp_left_insert | ((\neg A \imp A) \imp (\neg A \imp A) \imp A) \imp ((\neg A \imp A) \imp \neg A \imp A) \imp (\neg A \imp A) \imp A |
|
2 | imp_trans_curried | ((\neg A \imp A) \imp \neg A \imp \neg (\neg A \imp A)) \imp ((\neg A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp A) \imp (\neg A \imp A) \imp (\neg A \imp A) \imp A |
|
3 | imp_for_imp_left_insert | (\neg A \imp A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp \neg A \imp \neg (\neg A \imp A) |
|
4 | neg_elim_with_imp | \neg A \imp A \imp \neg (\neg A \imp A) |
|
5 | 3, 4 | mp | (\neg A \imp A) \imp \neg A \imp \neg (\neg A \imp A) |
6 | 2, 5 | mp | ((\neg A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp A) \imp (\neg A \imp A) \imp (\neg A \imp A) \imp A |
7 | neg_in_imp_reverse_elim | (\neg A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp A |
|
8 | 6, 7 | mp | (\neg A \imp A) \imp (\neg A \imp A) \imp A |
9 | 1, 8 | mp | ((\neg A \imp A) \imp \neg A \imp A) \imp (\neg A \imp A) \imp A |
10 | imp_reflect | (\neg A \imp A) \imp \neg A \imp A |
|
11 | 9, 10 | mp | (\neg A \imp A) \imp A |