Theorem neg_elim_with_imp | index | src |

¬消除→

theorem neg_elim_with_imp (A B: wff): $ \neg A \imp A \imp B $;
StepHypRefExpression
1 imp_for_imp_left_insert
(\neg A \imp (\neg B \imp \neg A) \imp A \imp B) \imp (\neg A \imp \neg B \imp \neg A) \imp \neg A \imp A \imp B
2 imp_left_intro
((\neg B \imp \neg A) \imp A \imp B) \imp \neg A \imp (\neg B \imp \neg A) \imp A \imp B
3 neg_in_imp_reverse_elim
(\neg B \imp \neg A) \imp A \imp B
4 2, 3 mp
\neg A \imp (\neg B \imp \neg A) \imp A \imp B
5 1, 4 mp
(\neg A \imp \neg B \imp \neg A) \imp \neg A \imp A \imp B
6 imp_left_intro
\neg A \imp \neg B \imp \neg A
7 5, 6 mp
\neg A \imp A \imp B

Axiom use

ZFC (ax_mp, ax_p1, ax_p2, ax_p3)