Theorem imp_for_imp_right_reverse_intro | index | src |

→对→右逆引入

theorem imp_for_imp_right_reverse_intro (A B C: wff):
  $ (A \imp B) \imp (B \imp C) \imp A \imp C $;
StepHypRefExpression
1 imp_for_imp_left_permute
((B \imp C) \imp (A \imp B) \imp A \imp C) \imp (A \imp B) \imp (B \imp C) \imp A \imp C
2 imp_for_imp_left_intro
(B \imp C) \imp (A \imp B) \imp A \imp C
3 1, 2 mp
(A \imp B) \imp (B \imp C) \imp A \imp C

Axiom use

ZFC (ax_mp, ax_p1, ax_p2)