MP规则假设引入
theorem mp_imp_left_intro (A B C D: wff): $ (A \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp_trans_curried | ((A \imp B \imp C) \imp (D \imp A) \imp D \imp B \imp C) \imp (((D \imp A) \imp D \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C) \imp (A \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C |
|
2 | imp_for_imp_left_intro | (A \imp B \imp C) \imp (D \imp A) \imp D \imp B \imp C |
|
3 | 1, 2 | mp | (((D \imp A) \imp D \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C) \imp (A \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C |
4 | imp_for_imp_left_intro | ((D \imp B \imp C) \imp (D \imp B) \imp D \imp C) \imp ((D \imp A) \imp D \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C |
|
5 | imp_for_imp_left_insert | (D \imp B \imp C) \imp (D \imp B) \imp D \imp C |
|
6 | 4, 5 | mp | ((D \imp A) \imp D \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C |
7 | 3, 6 | mp | (A \imp B \imp C) \imp (D \imp A) \imp (D \imp B) \imp D \imp C |