theorem irf (A: wff): $ A \imp A $;
Step | Hyp | Ref | Expression |
1 |
|
iils |
(A \imp (A \imp A) \imp A) \imp (A \imp A \imp A) \imp A \imp A |
2 |
|
ili |
A \imp (A \imp A) \imp A |
3 |
1, 2 |
mp |
(A \imp A \imp A) \imp A \imp A |
4 |
|
ili |
A \imp A \imp A |
5 |
3, 4 |
mp |
A \imp A |
Axiom use
ZFC
(ax_mp,
ax_p1,
ax_p2)