Theorem irf | index | src |

同一律

theorem irf (A: wff): $ A \imp A $;
StepHypRefExpression
1 iils
(A \imp (A \imp A) \imp A) \imp (A \imp A \imp A) \imp A \imp A
2 ili
A \imp (A \imp A) \imp A
3 1, 2 mp
(A \imp A \imp A) \imp A \imp A
4 ili
A \imp A \imp A
5 3, 4 mp
A \imp A

Axiom use

ZFC (ax_mp, ax_p1, ax_p2)