→对→左引入
theorem iili (A B C: wff): $ (B \imp C) \imp (A \imp B) \imp A \imp C $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iils | ((B \imp C) \imp (A \imp B \imp C) \imp (A \imp B) \imp A \imp C) \imp ((B \imp C) \imp A \imp B \imp C) \imp (B \imp C) \imp (A \imp B) \imp A \imp C |
|
2 | ili | ((A \imp B \imp C) \imp (A \imp B) \imp A \imp C) \imp (B \imp C) \imp (A \imp B \imp C) \imp (A \imp B) \imp A \imp C |
|
3 | iils | (A \imp B \imp C) \imp (A \imp B) \imp A \imp C |
|
4 | 2, 3 | mp | (B \imp C) \imp (A \imp B \imp C) \imp (A \imp B) \imp A \imp C |
5 | 1, 4 | mp | ((B \imp C) \imp A \imp B \imp C) \imp (B \imp C) \imp (A \imp B) \imp A \imp C |
6 | ili | (B \imp C) \imp A \imp B \imp C |
|
7 | 5, 6 | mp | (B \imp C) \imp (A \imp B) \imp A \imp C |