theorem itr (A B C: wff): $ A \imp B $ > $ B \imp C $ > $ A \imp C $;
Step | Hyp | Ref | Expression |
1 |
|
iirvi |
(A \imp B) \imp (B \imp C) \imp A \imp C |
2 |
|
hyp h1 |
A \imp B |
3 |
1, 2 |
mp |
(B \imp C) \imp A \imp C |
4 |
|
hyp h2 |
B \imp C |
5 |
3, 4 |
mp |
A \imp C |
Axiom use
ZFC
(ax_mp,
ax_p1,
ax_p2)