Theorem itr | index | src

→传递规则

theorem itr (A B C: wff): $ A \imp B $ > $ B \imp C $ > $ A \imp C $;
StepHypRefExpression
1 iirvi
(A \imp B) \imp (B \imp C) \imp A \imp C
2 hyp h1
A \imp B
3 1, 2 mp
(B \imp C) \imp A \imp C
4 hyp h2
B \imp C
5 3, 4 mp
A \imp C

Axiom use

ZFC (ax_mp, ax_p1, ax_p2)